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1. Introduction

The main result of this paper, which is a companion to [13], is the following
theorem.

Theorem 1. Let K be a non-trivial knot in S3, and let Yr be the3-manifold
obtained by Dehn surgery on K with surgery-coefficient r∈ Q. If |r | ≤ 2, then
π1(Yr ) is not cyclic. In fact, there is a homomorphismρ : π1(Yr ) → SU(2) with
non-cyclic image.

The statement thatYr cannot have cyclic fundamental group was previously
known for all cases exceptr = ±2. The caser = 0 is due to Gabai [12], the case
r = ±1 is the main result of [13], and the case thatK is a torus knot is analysed
for all r in [16]. All remaining cases follow from the cyclic surgery theorem of
Culler, Gordon, Luecke and Schalen [2]. It is proved in [15] that Y2 cannot be
homeomorphic toRP3. If one knew thatRP3 was the only closed 3-manifold
with fundamental groupZ/2Z (a statement that is contained in Thurston’s ge-
ometrization conjecture), then the first statement in the above theorem would
be a consequence. The second statement in the theorem appears to sharpen the
result slightly. In any event, we have:

Corollary 2. Dehn surgery on a non-trivial knot cannot yield a3-manifold with
the same homotopy type asRP3.

The proof of Theorem1 provides a verification of the Property P conjecture
that is independent of the results of the cyclic surgery theorem of [2]. Although
the argument follows [13] very closely, we shall avoid making explicit use of
instanton Floer homology and Floer’s exact triangle [11, 1]. Instead, we rely on
the technique that forms just the first step of Floer’s proof from [11], namely the
technique of “holonomy perturbations” for the instanton equations (see also the
remark following Proposition 16 in [13]).
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2. Holonomy perturbations

This section is a summary of material related to the “holonomy perturbations”
which Floer used in the proof of his surgery exact triangle for instanton Floer
homology [11]. Similar holonomy perturbations were introduced for the 4-
dimensional anti-self-duality equations in [3]; see also [17]. Our exposition
is taken largely from [1] with only small changes in notation. Some of our
gauge-theory notation is taken from [14].

Let Y be a compact, connected 3-manifold, possibly with boundary. Letw be
a unitary line bundle onY, and letE be a unitary rank 2 bundle equipped with
an isomorphism

ψ : det(E) → w.

Let gE denote the bundle whose sections are the traceless, skew-hermitian en-
domorphisms ofE, and let! be the affine space ofSO(3) connections ingE.
Let & be the gauge group of unitary automorphisms ofE of determinant 1 (the
automorphisms that respectψ). We write@w(Y) for the quotient space!/& .
A connectionA, or its gauge-equivalence class [A] ∈ @w(Y), is irreducible if
the stabilizer ofA is the group{±1} ⊂ & , and is otherwisereducible. The re-
ducible connections are the ones that preserve a decomposition ofgE asR ⊕ L,
whereL is an orientable 2-plane bundle; these connections have stabilizer either
S1 or (in the case of the product connection) the groupSU(2).

Definition 3. We write5w(Y) ⊂ @w(Y) for the space of& -orbits of flat con-
nections:

5w(Y) = { [ A] ∈ @w(Y) | FA = 0}.

This is therepresentation varietyof flat connections with determinantw.

We have the following straightforward fact:

Lemma 4. The representation variety5w(Y) is non-empty if and only ifπ1(Y)
admits a homomorphismρ : π1(Y) → SO(3) withw2(ρ) = c1(w) mod2. The
representation variety contains an irreducible element if and only if there is such
a ρ whose image is not cyclic.

If c1(w) = 0 mod2, then5w(Y) is isomorphic to the space of homomor-
phismsρ : π1(Y) → SU(2) modulo the action of conjugation.
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Suppose now thatY is a closed oriented 3-manifold. The flat connections
A ∈ ! are the critical points of the Chern-Simons function

CS :! → R,

CS(A) =
1

4

∫
Y

tr
(
(A − A0) ∧ (FA + FA0)

)
,

whereA0 is a chosen reference point in! , and tr denotes the trace on 3-by-3
matrices. We define a class of perturbations of the Chern-Simons functional, the
holonomyperturbations.

Let D be a compact 2-manifold with boundary, and letι : S1
× D ↪→ Y.

Choose a trivialization ofw over the image ofι. With this choice, each connec-
tion A ∈ ! gives rise to a unique connectioñA in E|im(ι) with the property that
det(Ã) is the product connection in the trivialized bundlew|im(ι). Thus Ã|im(ι)

is anSU(2) connection. Given a smooth 2-formµ with compact support in the
interior of D and integral 1, and given a smooth class-function

φ : SU(2) → R,

we can construct a function
8 : ! → R

that is invariant under& as follows. For eachz ∈ D, let γz be the loop
t 7→ ι(t, z) in Y, and let Holγz(Ã) denote the holonomy of̃A alongγz, as an
automorphism of the fiberE at the pointy = ι(0, z). The class-functionφ de-
termines also a function on the group of determinant-1 automorphisms of the
fiber Ey, and we set

8(A) =

∫
D
φ(Holγz(Ã))µ(z).

One can write down the equations for a critical pointA of the function CS+8
on ! . They take the form

FA = φ′(HA)µY,

where HA is the section of the bundle Aut(E) over im(ι) obtained by taking
holonomy around the circles,φ′ is the derivative ofφ, regarded as a map from
Aut(E) to gE, andµY is the 2-form onY obtained by pulling backµ to S1

× D
and then pushing forward alongι. (See [1].)

Definition 5. Givenι andφ as above, we write

5w
ι,φ(Y) = { [ A] ∈ @w(Y) | FA = φ′(HA)µY }.

This is theperturbed representation variety.
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Now specialize to the case thatD is a disk, soι is an embedding of a solid
torus. Let

C = Y \ im(ι)◦

be the complementary manifold with torus boundary. Letz0 ∈ ∂D be a base-
point, and leta andb be the oriented circles in∂C described by

a = ι
(
S1

× {z0}
)

b = ι
(
{0} × ∂D

)
.

(1)

These are the “longitude” and “meridian” of the solid torus. We continue to
suppose thatw is trivialized on im(ι) and hence on∂C. So the restriction ofE
to ∂C is given the structure of anSU(2) bundle. Given a connectionA on gE

that is flat on∂C, let Ã be the corresponding flatSU(2) connection inE|∂C. One
can choose a determinant-1 isomorphism between the fiber ofE at the basepoint
ι(0, z0) so that the holonomies of̃A arounda andb become commuting elements
of SU(2) given by

Hola(Ã) =

[
eiα 0
0 e−iα

]
Holb(Ã) =

[
eiβ 0
0 e−iβ

]
.

The pair(α(A), β(A)) ∈ R2 is determined byA up to the ambiguities

(a) adding integer multiples of 2π to α or β;

(b) replacing(α, β) by (−α,−β).

Definition 6. Let S ⊂ R2 be a subset of the plane with the property thatS+2πZ2

is invariant unders 7→ −s. Define the set

5w(C | S) ⊂ 5w(C)

as
5w(C | S) = { [ A] ∈ 5w(C) | (α(A), β(A)) ∈ S+ 2π Z2

},

where(α(A), β(A)) are the longitudinal and meridional holonomy parameters,
determined up to the ambiguities above.

One should remember that the choice of trivialization ofw on im(ι) is used in
this definition, and in general the set we have defined will depend on this choice.

A class-functionφ onSU(2) corresponds to a functionf : R → R via

f (t) = φ

([
ei t 0
0 e−i t

])
.
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The function f satisfiesf (t) = f (t + 2π) and f (−t) = f (t). The following
observation of Floer’s is proved as Lemma 5 in [1].

Lemma 7. Let f : R → R correspond toφ as above. Then restriction from Y
to C gives rise to a bijection

5w
ι,φ(Y) → 5w

(
C | β = − f ′(α)

)
.

We also have the straightforward fact:

Lemma 8. If g : R → R is a smooth odd function with period2π , then there
is a class-functionφ on SU(2) such that the corresponding function f satisfies
f ′

= g.

3. Removing flat connections by perturbation

Let us now take the case thatY is a homologyS1
× S2, and letw → Y be a line-

bundle withc1(w) a generator forH2(Y; Z) = Z. Let N ↪→ Y be an embedded
solid torus whose core is a curve representing a generator ofH1(Y; Z), and let
C be the manifold with torus boundary

C = Y \ N◦.

By a “slope” we mean an isotopy class of essential closed curves on the torus
∂C. For each slopes, let Ys denote the manifold obtained fromC by Dehn
filling with slopes: that is,Ys is obtained fromC by attaching a solid torus in
such a way that curves in the classs bound disks in the solid torus.

ParametrizeN by a mapι : S1
× D2

→ N. Let a andb be the curves (1) on
∂N. The Dehn fillingYb on the slope represented byb is justY. The manifold
Ya hasH1(Ya; Z) = 0. Lets be the slope

s = [ pa + qb],

wherep andq are coprime and both positive

Proposition 9. Let s be as above, and suppose

p/q ≤ 2.

Suppose that neitherπ1(Ya) nor π1(Ys) admits a homomorphism to SU(2) with
non-cyclic image. Then there is a holonomy-perturbation(ι, φ) for the manifold
Y such that the perturbed representation variety5w

ι,φ(Y) is empty.
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Proof. Fix a trivializationτ of w overN. At this stage the choice is immaterial,
because any two choices differ by an automorphism ofw that extends over all
of Y. Write

Ya = C ∪ Na,

Ys = C ∪ Ns,

whereNa and Ns are the solid tori from the Dehn surgery. The trivialization
of w over∂C allows us to extendw to a line-bundlewa → Ya equipped with
a trivializationτa over Na, extending the given trivialization on∂C. Note that
wa is globally trivial on the homology 3-sphereYa, but the global trivialization
differs from τa on the curveb ⊂ ∂C by a mapb → S1 of degree 1. This is
because there is a surface6 ⊂ C with boundaryb, and the original trivialization
τ does not extend over6. The same remarks apply toYs.

On the manifoldYs, in addition to constructingws as above, we construct a
different line bundlew̃s → Ys as follows. Letτ̃ be the trivialization ofw|∂C

with the property that̃ττ−1 is a map∂C → S1 with degreeq onb and degree 0
on a. Let w̃s be obtained by extendingw as a trivial bundle overNs extending
the trivializationτ̃ .

If p is odd, thenYs hasH2(Ys; Z/2) = 0. Whenp is even, the construction
of w̃s makesc1(w̃s) divisible by 2. So in either case, elements of5 w̃s(Ys)

correspond to homomorphismsρ : π1(Ys) → SU(2).
The following lemma is straightforward.

Lemma 10. Restriction to C gives identifications

5wa(Ya) → 5w
(

C | α = 0
)

5ws(Ys) → 5w
(

C | pα + qβ = 0
)

5 w̃s(Ys) → 5w
(

C | pα + qβ = qπ
)

The manifoldC has H1(C; Z) = Z, so the representation variety5w(C)
contains reducibles. The next lemma describes theirα andβ parameters.

Lemma 11. If [ A] is a reducible element of5w(C), then(α(A), β(A)) lies on
the lineβ = π mod2πZ.

Proof. If [ A] is a reducible element of5w(C), thenA is a flatSO(3) connection
on C with cyclic holonomy. The holonomy aroundb is the identity element
of SO(3) becauseb bounds the surface6 in C. So the correspondingSU(2)
connectionÃ on E|b (regardingE|b as anSU(2) bundle usingτ ) has holonomy
±1 in SU(2). It follows thatβ is 0 orπ mod 2π . We can equipw on C with a
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connectionθ which respects the trivializationτ on ∂C and whose curvatureFθ
integrates to−2π i on6. TheSU(2) connectionÃ can be uniquely extended
to aU (2) connectionÃ on all of E|C, in such a way that the associatedSO(3)
connection isA and such that the induced connection on det(E) = w is θ . The
connection reducesE to a sum of line bundles, both of which have curvature
Fθ/2. The holonomy of these line bundles onb is given by

exp
∫
6

(Fθ/2) = −1.

Soβ = π mod 2π as claimed. This completes the proof of the lemma.

If we suppose that the homology-sphereYa has a fundamental group with
no non-trivial homomorphisms toSU(2), then5wa(Ya) consists of a single re-
ducible element. By the previous two lemmas, theα andβ parameters of this
connection lie on the two lineα = 0 andβ = π . So it is the point

va = (0, π)

mod 2πZ2. Similarly theα and β parameters of the reducible elements in
5 w̃s(Ys) lie on the linepα + qβ = π mod 2π and the lineβ = π . So they
are represented by the points

vs,k = (2πk/p, π)

mod 2πZ2. The next lemma is a standard result, from [11] of [1]. We supply the
proof for completeness.

Lemma 12. Supposeπ1(Ya) admits no non-trivial homomorphisms to SU(2).
For any neighborhood W of(0, π), let us write

W∗
= W ∩ {β 6= π}.

Then there exists a symmetric neighborhood W of(0, π) such that

5w(C | W∗) = ∅.

Proof. The space5wa(Ya) consists of a single point, represented by theSO(3)
connectionAa with trivial holonomy. By the one-to-one correspondence from
Lemma10, it follows that5w(C | (0, π)) consists of a single point [A] repre-
sented by anSO(3) connection which trivializesgE. We need only show that
a neighborhood of [A] in 5w(C) consists entirely of reducibles. Equivalently,
writing π for π1(C), we can study a neighborhood of the trivial homomorphism
ρ1 : π → SO(3) and show that it consists of reducible connections.
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The deformations ofρ1 are governed byH1(π; R3) = H1(C) ⊗ R3, which
is a copy ofR3. It will be sufficient to exhibit a 1-parameter deformation of
ρ realizing any given vector in thisH1 as its tangent vector and consisting en-
tirely of reducibles. This is straightforward. Givenξ ∈ so(3), we can consider
the 1-parameter family of connections in the trivialSO(3) bundle given by the
connection 1-formstξη, whereη is a closed 1-form with period 1 onC and
t ∈ R.

We need one more lemma before completing the proof of Proposition9.

Lemma 13. For any S, there is a one-to-one correspondence between5w(C |

S) and5w(C | S′), where S′ is the translate S+ (π,0).

Proof. Let ε be an automorphism of theU (2) bundleE → C whose determi-
nant is a functionC → S1 which has degree 1 on the curvea. (The automor-
phism ε does not belong to the gauge group& , because elements of& have
determinant 1.) The elementε acts on the space of flat connectionsA in ! (C),
and gives rise to a bijective self-map of the space5w(C):

ε̄ : 5w(C) → 5w(C).

This map restricts to a bijection̄ε : 5w(C | S) → 5w(C | S′).

We can now conclude the proof of the proposition. Suppose thatπ1(Ya) ad-
mits only the trivial homomorphism toSU(2), and that the only homomorphisms
ρ : π1(Ys) → SU(2) are those with cyclic image. LetL ⊂ R2 be the closed line
segment

L = { (α, β) | α = 0,−π ≤ β ≤ π }

and letL∗ be the open line-segment obtained by removing the endpoints. LetL∗

π

andL∗

−π be the translates of this line segment by the vectors(π,0) and(−π,0).
By Lemmas10and11, the hypothesis onπ1(Ya) means that

5w(C | L∗) = ∅.

By Lemma13, we therefore have

5w(C | L∗

±π ) = ∅.

Let P1 be the line

P = { pα + qβ = qπ }
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and letP2 = P1 − (0,2π). The hypothesis onπ1(Ys) means that5w(C | Pi )

consists only of reducibles, lying over the points onPi whereβ = π mod 2π .
Let S ⊂ R2 be the piecewise-linear arc with vertices at the points

z1 = (−π,0)

z2 = (−π, −(1 − p/q)π)

z3 = (0,−π)

z4 = (0, π)

z5 = (π, (1 − p/q)π)

z6 = (π,0).

Figure1 shows the setS in the casep/q = 5/3. Becausep/q ≤ 2, the set is
contained in the region−π ≤ β ≤ π . If p/q = 2, thenShas four points on the
linesβ = ±π ; otherwise it has just two,

Let S∗ be the complement inS in of the points whoseβ coordinates are±π .
Given any symmetric neighborhoodU of S, let U ∗ similarly stand for

U ∗
= U \ {β = ±π }. (2)

We know that5w(C | S∗) = ∅, becauseS is entirely contained in the union
of L, L±π and the two linesP1, P2. From Lemma12 and the compactness of
5w(C), it follows that there is a symmetric neighborhoodU of Ssuch that

5w(C | U ∗) = ∅. (3)

We now observe that, given any neighborhoodU of S, we can find a smooth
odd functiong with period 2π such that the graph of−g on the interval [−π, π ]
is entirely contained inU ∗. By Lemma7 and Lemma8, there exists aφ such
that

5w
ι,φ(Y) = 5w

(
C | β = −g(α)

)
.

The right hand side is empty because it is contained in the empty set (3). This
finishes the proof of the proposition.

We can reformulate the result of Proposition9 in the special case thatYa is S3

as follows.

Corollary 14. Let K be a knot in S3 and let Yr be the manifold obtained by
Dehn surgery with coefficient r∈ Q. Let Y0 be the manifold obtained by0-
surgery, and letw → Y0 be a line bundle whose first Chern class is a gener-
ator of H2(Y0; Z). Supposeπ1(Yr ) admits no homomorphismρ to SU(2) with
non-cyclic image. Then, if0 < r < 2, the manifold Y0 admits a holonomy
deformation(ι, φ) so that5w

ι,φ(Y0) is empty.
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FIGURE 1. The setS, for p/q = 5/3. The(α, β) parameters of reducible elements of
5w(C) lie on the dashed lines.

4. Proof of the theorem

(i) A stretching argument

Let X be a closed, oriented 4-manifold containing a connected, separating 3-
manifoldY. Let g1 be metric onX that is cylindrical on a collar region [−1,1]×
Y containingY in X. For L > 0, let XL

∼= X be the manifold obtained fromX
by removing the piece [−1,1] × Y and replacing it with [−L , L] × Y. There is
a metricgL on XL that contains a cylindrical region of length of 2L and agrees
with the original metric on the complement of the cylindrical piece.

Let v → X be a line bundle, letE → X be a unitary rank-2 bundle with
det(E) = v, and form the configuration space@ v(X, E) of connections ingE

modulo determinant-1 gauge transformations ofE, as we did in the 3-dimensional
case. In dimension 4, the bundleE is not determined up to isomorphism byv
alone, so we include it in our notation. Inside@ v(X, E) is the moduli space of
anti-self-dual connections,

Mv(X, E) = { [ A] ∈ @ v(X, E) | F+

A = 0}.

For eachL > 0, we also have a moduli space

Mv(XL , E) ⊂ @ v(XL , E).

(We do not take the trouble to introduce the additional notationvL and EL for
the corresponding bundles onXL .)

Let (ι, φ) be data for a holonomy perturbation for the bundleE|Y. Following
[10, 11, 4], we shall useφ also to perturb the anti-self-duality equations onXL .
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We useι to embed [−L , L] × S1
× D into XL , and letµX be the 2-form on the

cylindrical part [−L , L] × Y obtained by pulling backµ from D and pushing
forward using this embedding. We choose a trivialization ofv = det(E) on
the image of the embedding so that eachSO(3) connection ingE determines
uniquely anSU(2) connection. For eachA, the holonomy around the circles
defines, as before, a sectionHA over [−L , L] × im(ι) of the bundle Aut(E), and
we obtain

φ′(HA) ∈ C∞([−L , L] × im(ι); gE).

For L > 1, let β : XL → [0,1] be a smooth cut-off function, supported in
[−L , L] × Y and equal to 1 on [−L + 1, L − 1] × Y. On XL , theperturbed
anti-self-duality equationis the equation

F+

A + βφ′(HA)µ
+

= 0. (4)

We define the corresponding moduli space:

Mv
φ(XL , E) = { [ A] ∈ @ v(XL , E) | equation (4) holds}. (5)

Proposition 15. Letw = v|Y. Suppose that there is a holonomy perturbation
on Y such that the perturbed representation variety5w

ι,φ(Y) is empty. Then for
each E with determinantv on X, there exists an L0 such that Mvφ(XL , E) is also
empty, for all L≥ L0.

Proof. The proof is some subset of a standard discussion of holonomy pertur-
bations and compactness in Floer homology theory (see [11, 1, 4]). Suppose on
the contrary that we can find [Ai ] in Mv

φ(XL i , E) for an increasing, unbounded
sequence of lengthsL i . We start as usual with the fact that the quantity

% (Ai ) =

∫
XLi

tr(FAi ∧ FAi )

= ‖F−

Ai
‖

2
− ‖F+

Ai
‖

2

is independent ofi and depends only on the Chern numbers of the bundleE.
(The norms areL2 norms.) We write this quantity as the sum of three terms:

% (Ai ) = % (Ai | X1)+ % (Ai | X2)+ % (Ai | X3
i ),

where
X1

= XL i \
(
[−L i , L i ] × Y

)
X2

=
(
[−L i ,−L i + 1] × Y

)
∪

(
[L i − 1, L i ] × Y

)
X3

i = [−L i + 1, L i − 1] × Y.
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Only the third piece has a geometry which depends oni . From the equation (4),
we have

% (Ai | X1) ≥ 0

becauseβ is zero onX1. The second term in equation (4) is pointwise uniformly
bounded, so

% (Ai | X2) ≥ −C2

whereC2 is independent ofi . Because the sum of the three terms is constant,
we deduce that

% (Ai | X3
i ) ≤ K ,

whereK is independent ofi .
To understand the term% (Ai | X3

i ) better, one must reinterpret (4). On X3
i ,

the functionβ is 1. Identify E on this cylinder with the pull-back of a bundle
EY → Y, and choose a gauge representativeAi for [ Ai ] in temporal gauge.
Write

Ai (t) = Ai |{t}×Y, (−L i + 1 ≤ t ≤ L i − 1).

ThusAi (t) becomes a path in the space of connections! (Y; EY). The equation
(4) is equivalent onX3

i to the condition thatAi (t) solves the downward gradient
flow equation for the perturbed Chern-Simons functional on! (Y; EY):

d

dt
Ai (t) = −grad(CS+8).

In particular, CS+8 is monotone decreasing along the path (or constant). The
function|8| is a bounded function on! (Y; EY): we can write

|8| ≤ K ′.

The change in CS is equal to the quantity−% : that is,

CS
(
Ai (−L i + 1)

)
−CS

(
Ai (L i − 1)

)
= % (Ai | X3

i )

≤ K

So from the bound on|8| we obtain

(CS+8)
(
Ai (−L i + 1)

)
−(CS+8)

(
Ai (L i − 1)

)
≤ K + 2K ′.

Now let δ > 0 be given. Because CS+8 is decreasing and the total drop is
bounded byK + 2K ′, we can find intervals

(ai ,bi ) ⊂ [−L i + 1, L i + 1]
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of lengthδ, so that the drop in CS+ 8 along(ai ,bi ) tends to zero asi goes to
infinity. Because the equation is a gradient-flow equation, this means

lim
i →∞

∫ bi

ai

‖grad(CS+8)(Ai (t))‖
2
L2(Y) dt = 0.

We have an expression for grad8 as a uniformly bounded form, so

lim sup
i →∞

∫ bi

ai

‖FAi (t)‖
2
L2(Y) dt ≤ δJ

for some constantJ depending onφ. So given anyε > 0, we can find aδ > 0
and a sequence of intervals(ai ,bi ) of lengthδ so that∫

(ai ,bi )×Y
|FAi |

2 dvol ≤ ε

for all i ≥ i0. We now regard theAi as connections on the fixed cylinder
(0, δ)×Y. At this point, ifε is smaller than the threshold for Uhlenbeck’s gauge
fixing theorem on the 4-ball, we can find 4-dimensional gauge transformations
on the cylinder so that, after applying these gauge transformations and passing
to a subsequence, the connections converge inC∞ on compact subsets. (See for
example [4, section 5.5].)

If A is the limiting connection on(0, δ) × Y, in temporal gauge, then the
function CS+8 is constant along the pathA(t). It follows thatA(t) is constant
and is a critical point of CS+8. This tells us that [A(t)] belongs to the perturbed
representation variety5w

ι,φ(Y), which we were supposing to be empty.

The proposition above has the following corollary for the Donaldson polyno-
mial invariants. (Our notation and conventions for these invariants is taken from
[14].)

Corollary 16. Let X be an admissible4-manifold in the sense of [14], so that
its Donaldson polynomial invariants DvX are defined. (For example, suppose
H1(X; Z) is zero and b+(X) is greater than1.) Then, under the assumptions
of the previous proposition, the polynomial invariants are identically zero, re-
garded as a map

Dv
X : A(X) → Z.

Proof. The definition ofDv
X involves first choosing a Riemannian metric onX

so that the moduli spacesMv(X, E) are smooth submanifolds of@ v(X, E),
containing no reducibles and cut out transversely by the equations. IfX is ad-
missible, then this can always be done, by changing the metric inside a ball inX.
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The value of the invariant is then defined as a signed count of the intersection
points betweenMv(X, E) and some specially-constructed finite-codimension
submanifolds of@ v(X, E). This part of the construction ofDv

X involves only
transversality arguments, which can be carried out equally withMv

φ(XL , E) in
place ofMv(X, E), for any fixedL. That the signed count is independent of the
choices made, in the unperturbed setting, is a consequence of the compactness
theorem for the moduli space. The Uhlenbeck compactification works the same
way for Mv

φ(XL , E) as it does for the unperturbed anti-self-duality equations
(see [4] for example); so the Donaldson invariants can be defined using the per-
turbed moduli spaces. Each moduli space is empty onceL is large enough, so
the invariants are zero.

(ii) Concluding the proof

The rest of the argument is essentially the same as the proof of the main theorem
in [13]. Let K be a knot inS3 that is a counterexample to Theorem1. We will
obtain a contradiction.

The manifoldY0 obtained by zero-surgery admits a taut foliation and is not
S1

× S2, by the results of [12]. The following proposition is proved in [13] using
the results of [7] and [6]:

Proposition 17. Let Y be a closed orientable3-manifold admitting an oriented
taut foliation. Suppose Y is not S1

× S2. Then Y can be embedded as a separat-
ing hypersurface in a closed symplectic4-manifold(X, �). Moreover, we can
arrange that X satisfies the following additional conditions.

(a) The first homology H1(X; Z) vanishes.

(b) The euler number and signature of X are the same as those of some
smooth hypersurface inCP3, whose degree is even and not less than6.

(c) The restriction map H2(X; Z) → H2(Y; Z) is surjective.

(d) The manifold X contains a tight surface of positive self-intersection num-
ber, and a sphere of self-intersection−1.

We apply this proposition to the manifoldY0, to obtain anX with all of
the above properties. Using the results of [8], it was shown in [13] that a 4-
manifold satisfying these conditions satisfies Witten’s conjecture relating the
Seiberg-Witten and Donaldson invariants. (See [13, Conjecture 5 and Corollary
7] for an appropriate statement of Witten’s conjecture in this context.) Because
X is symplectic, its Seiberg-Witten invariants are non-trivial by [18]. For the
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same reason,X has Seiberg-Witten simple type. From Witten’s conjecture, it
follows that the Donaldson invariantsDv

X are non-trivial, for allv on X.
By the penultimate condition onX in Proposition17, we can choosev → X

so thatc1(v) restricts to a generator ofH2(Y0; Z). Write w = v|Y0. If K is a
counterexample to Theorem1, then Corollary14 tells us there is a holonomy
perturbationφ such that

5w
ι,φ(Y0) = ∅.

Corollary16 then tells us thatDv
X is zero. This is the contradiction.

(iii) Further remarks

An analysis of the proof of Theorem1 reveals that it proves a slightly stronger
result (stronger, that is, if one is granted the results of [12]). For example, we
can state:

Theorem 18. Let N be an embedded solid torus in an irreducible closed3-
manifold Y with H1(Y) = Z. Let C = Y \ N◦ be the complementary manifold
with torus boundary.

Then there is at most one Dehn filling of C which yields a homotopy sphere.
Indeed, for all but one slope, the fundamental group of the manifold obtained by
Dehn filling admits a non-trivial homomorphism to SU(2).

The point here is that the original hypothesis need not be thatK is a non-trivial
knot in S3. What one wants is that zero-surgery onK should be an irreducible
homologyS1

×S2; and if we make this our hypothesis, then we can also consider
the case thatK is a knot in (for example) a homotopy sphere.

One can also ask whether there is a non-trivial extension of Theorem1 to
other integer surgeries. The results of [15] show that surgery with coefficient 3
or 4 on a non-trivial knot cannot be a lens space. It would be interesting to know
whether the fundamental groups ofY3 andY4 must admit homomorphisms to
SU(2) with non-abelian image whenK is non-trivial. Surgery with coefficient
+5 on the right-handed trefoil produces a lens space, so one does not expect to
extend Theorem1 further in the direction of integer surgeries without additional
hypotheses. Dunfield [5] has provided an example of a non-trivial knot inS3

for which the Dehn fillingY37/2 has a fundamental group which is not cyclic but
admits no homomorphism toSU(2) (or evenSO(3)) with non-abelian image.
(The knot is the(−2,3,7) pretzel knot, for whichY18 and Y19 are both lens
spaces [9].) This example shows that the property of having cyclic fundamental
group and the property of admiting no cyclic homomorphic image inSU(2) are
in general different for 3-manifolds obtained by Dehn surgery.
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