Dehn surgery, the fundamental group andSU(2)

P. B. Kronheimer and T. S. Mrowka

Harvard University, Cambridge MA 02138
Massachusetts Institute of Technology, Cambridge MA 02139

1. Introduction

The main result of this paper, which is a companion1§],[is the following
theorem.

Theorem 1. Let K be a non-trivial knot in § and let Y be the3-manifold
obtained by Dehn surgery on K with surgery-coefficieat ®@. If |r| < 2, then
m1(Yy) is not cyclic. In fact, there is a homomorphigm 71(Y,) — SU(2) with
non-cyclic image.

The statement that, cannot have cyclic fundamental group was previously
known for all cases except= +2. The case = 0 is due to Gabail2], the case
r = £1 is the main result ofl3], and the case th& is a torus knot is analysed
for all r in [16]. All remaining cases follow from the cyclic surgery theorem of
Culler, Gordon, Luecke and Schalez].[It is proved in [L5] that Y, cannot be
homeomorphic t@RP3. If one knew thaRP® was the only closed 3-manifold
with fundamental grouZ /27 (a statement that is contained in Thurston’s ge-
ometrization conjecture), then the first statement in the above theorem would
be a consequence. The second statement in the theorem appears to sharpen the
result slightly. In any event, we have:

Corollary 2. Dehn surgery on a non-trivial knot cannot yiel®@ananifold with
the same homotopy type B§°. O

The proof of Theoreni provides a verification of the Property P conjecture
that is independent of the results of the cyclic surgery theorer#] oAjthough
the argument follows1[3] very closely, we shall avoid making explicit use of
instanton Floer homology and Floer’s exact triandl&, [1]. Instead, we rely on
the technique that forms just the first step of Floer’s proof fradj,[namely the
technique of “holonomy perturbations” for the instanton equations (see also the
remark following Proposition 16 inlf3]).
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2. Holonomy perturbations

This section is a summary of material related to the “holonomy perturbations”
which Floer used in the proof of his surgery exact triangle for instanton Floer
homology [L1]. Similar holonomy perturbations were introduced for the 4-
dimensional anti-self-duality equations if]] see also 17]. Our exposition
is taken largely from ] with only small changes in notation. Some of our
gauge-theory notation is taken frory.

LetY be a compact, connected 3-manifold, possibly with boundaryuwlis
a unitary line bundle otY, and letE be a unitary rank 2 bundle equipped with
an isomorphism

¥ det(E) — w.

Let ge denote the bundle whose sections are the traceless, skew-hermitian en-
domorphisms of, and let« be the affine space &Q(3) connections irge.

Let ¢ be the gauge group of unitary automorphism&asf determinant 1 (the
automorphisms that respeg). We write 3™ (Y) for the quotient space//¥.

A connectionA, or its gauge-equivalence clasa][e B (Y), isirreducibleif

the stabilizer ofA is the group{£1} C %, and is otherwiseeducible The re-
ducible connections are the ones that preserve a decomposiiigrasik & L,
whereL is an orientable 2-plane bundle; these connections have stabilizer either
S' or (in the case of the product connection) the gréufs2).

Definition 3. We write 2*(Y) c 8™ (Y) for the space of§-orbits of flat con-
nections:

RY) ={[Al € B"(Y) | Fa=0}.
This is therepresentation varietgf flat connections with determinant O
We have the following straightforward fact:

Lemma 4. The representation varietg* (Y) is hon-empty if and only it,(Y)
admits a homomorphism : 71(Y) — SQ(3) with wz(p) = ¢ (w) mod2. The
representation variety contains an irreducible element if and only if there is such
a p whose image is not cyclic.

If ci1(w) = 0 mod2, then®™(Y) is isomorphic to the space of homomor-
phismsp : 71(Y) — SU(2) modulo the action of conjugation. O



Suppose now thaY is a closed oriented 3-manifold. The flat connections
A e ¢ are the critical points of the Chern-Simons function

CS: . d — R,
1
csim = /Y tr((A— Ao) A (Fa+ Fay).

where Ag is a chosen reference point i, and tr denotes the trace on 3-by-3
matrices. We define a class of perturbations of the Chern-Simons functional, the
holonomyperturbations.

Let D be a compact 2-manifold with boundary, anddet St x D < Y.
Choose a trivialization ofv over the image of. With this choice, each connec-
tion A € « gives rise to a unique connectigin Elim(, with the property that
detA) is the product connection in the trivialized bundi¢m. Thus Al
is anSU(2) connection. Given a smooth 2-formwith compact support in the
interior of D and integral 1, and given a smooth class-function

¢ :SU2) — R,

we can construct a function
9 - R

that is invariant undefd¢ as follows. For eactz € D, let y, be the loop

t — «(t,2) in Y, and let Ho,(A) denote the holonomy oA alongy;, as an
automorphism of the fibeE at the pointy = ((0, z). The class-functiow de-
termines also a function on the group of determinant-1 automorphisms of the
fiber Ey, and we set

O (A) = /D ¢ (Hol,,(A)(2).

One can write down the equations for a critical pof the function CS- @
on «. They take the form

Fa=¢ (Ha)uy,

where Hp is the section of the bundle AWE) over im(:) obtained by taking
holonomy around the circleg)/ is the derivative ofp, regarded as a map from
Aut(E) to gg, anduy is the 2-form onY obtained by pulling back to St x D
and then pushing forward along(See [].)

Definition 5. Given: and¢ as above, we write
R (V) ={[Al € B"(Y) | Fa=¢'(Ha)py }.

This is theperturbed representation variety O



Now specialize to the case thBtis a disk, sa is an embedding of a solid
torus. Let
C=Y\imQ°

be the complementary manifold with torus boundary. et 9D be a base-
point, and leta andb be the oriented circles i®iC described by

a=(S" x {z})

b=t({0} X BD). (1)

These are the “longitude” and “meridian” of the solid torus. We continue to
suppose that is trivialized on in(t) and hence 0dC. So the restriction oE

to aC is given the structure of aBU(2) bundle. Given a connectioA on gg

that is flat ordC, let A be the corresponding fl&U(2) connection inE|;c. One

can choose a determinant-1 isomorphism between the fileabthe basepoint
1(0, Zo) so that the holonomies & arounda andb become commuting elements

of SU(2) given by
= g* 0
Hola(A) = [ 0 em}
~ el 0
The pair(a(A), B(A)) € R? is determined byA up to the ambiguities
(a) adding integer multiples of/2to « or 8;
(b) replacing(c, B) by (—a, —p).

Definition 6. Let S C R? be a subset of the plane with the property tBar 72
is invariant undes — —s. Define the set

RU(C | CR(C)

as
RY(C 19 ={[Al € R"(C) | (@(A), B(A) € S+ 27 7%},

where(a(A), B(A)) are the longitudinal and meridional holonomy parameters,
determined up to the ambiguities above. O

One should remember that the choice of trivializatiomadn im(¢) is used in
this definition, and in general the set we have defined will depend on this choice.
A class-functionp on SU(2) corresponds to a functioh : R — R via

w-o(5 2)



The functionf satisfiesf (t) = f(t + 27) and f (—t) = f(t). The following
observation of Floer's is proved as Lemma 51 |

Lemma 7. Let f : R — R correspond tap as above. Then restriction from Y
to C gives rise to a bijection

R NY)—> R(C|B=—1'()).

We also have the straightforward fact:

Lemma 8. If g : R — R is a smooth odd function with peridtkr, then there
is a class-functiop on SU2) such that the corresponding function f satisfies
f' = g. ]

3. Removing flat connections by perturbation

Let us now take the case thais a homologyS' x S, and letw — Y be a line-
bundle withc, (w) a generator foH?(Y; Z) = Z. LetN — Y be an embedded
solid torus whose core is a curve representing a generatdi @f; Z), and let
C be the manifold with torus boundary

C=Y\N°.

By a “slope” we mean an isotopy class of essential closed curves on the torus
dC. For each slops, let Ys denote the manifold obtained fro@ by Dehn
filling with slopes: that is,Ys is obtained fronC by attaching a solid torus in
such a way that curves in the clasbound disks in the solid torus.

ParametrizeN by a map. : S' x D? — N. Leta andb be the curvesl) on
dN. The Dehn fillingY, on the slope represented bys justY. The manifold
Ya hasHy(Ya; Z) = 0. Lets be the slope

s=[pa+qb],
wherep andq are coprime and both positive
Proposition 9. Let s be as above, and suppose

p/q <2

Suppose that neither; (YY) nor 71(Ys) admits a homomorphism to $2) with
non-cyclic image. Then there is a holonomy-perturbatiow) for the manifold
Y such that the perturbed representation varigfyj, (Y) is empty.



Proof. Fix a trivializationt of w overN. At this stage the choice is immaterial,
because any two choices differ by an automorphisr dfiat extends over all
of Y. Write

Ya = C U Ng,

YS:CUNs,

where N, and Ns are the solid tori from the Dehn surgery. The trivialization
of w overdC allows us to extendv to a line-bundlew, — Y, equipped with

a trivializationz; over N, extending the given trivialization ofC. Note that
wg is globally trivial on the homology 3-sphelg, but the global trivialization
differs from z, on the curveb ¢ dC by a mapb — S! of degree 1. This is
because there is a surfagec C with boundaryb, and the original trivialization

7 does not extend ovet. The same remarks apply Y.

On the manifoldys, in addition to constructingys as above, we construct a
different line bundlews — Ys as follows. Let? be the trivialization ofw|;c
with the property thatr—* is a mapdC — S' with degreeq onb and degree 0
ona. Let ws be obtained by extending as a trivial bundle oveNg extending
the trivializationt.

If pis odd, thenYs hasH?(Ys; Z/2) = 0. Whenp is even, the construction
of ws makescy(ws) divisible by 2. So in either case, elements®fs(Ys)
correspond to homomorphisms 1(Ys) — SU(2).

The following lemma is straightforward.

Lemma 10. Restriction to C gives identifications

R"(Ya) > R"(C |a=0)
R"(Ys) > R"(C | pa+0B =0)
R"(Ys) — R"(C | pa+0B =qr )

O]

The manifoldC hasH.(C; Z) = Z, so the representation varie®®@* (C)
contains reducibles. The next lemma describes thaind 3 parameters.

Lemma 11. If [A] is a reducible element gk (C), then(a(A), B(A)) lies on
the line = 7 mod2rZ.

Proof. If[ A]is areducible element gk* (C), thenAis a flatSQ(3) connection
on C with cyclic holonomy. The holonomy arourais the identity element
of SO(3) becauseé bounds the surfacZ in C. So the correspondin§U(2)
connectionA on E|,, (regardingE|, as anSU(2) bundle using) has holonomy
+1 in SU(2). It follows thatg is 0 orr mod 2r. We can equipv on C with a



connectiory which respects the trivialization on 9C and whose curvaturg,
integrates to-2zi on =. The SU(2) connectionA can be uniquely extended
to aU (2) connectionA on all of E|¢, in such a way that the associat8@(3)
connection isA and such that the induced connection onBet= w is6. The
connection reducek to a sum of line bundles, both of which have curvature
Fy/2. The holonomy of these line bundles lois given by

exp/ (Fy/2) = —1.
X

SoB = 7 mod 2t as claimed. This completes the proof of the lemma. [

If we suppose that the homology-sphéfghas a fundamental group with
no non-trivial homomorphisms 8U(2), then%*2(Y,) consists of a single re-
ducible element. By the previous two lemmas, ¢hand 8 parameters of this
connection lie on the two line = 0 andg = . So it is the point

va = (0, )

mod 2r72. Similarly the« and g parameters of the reducible elements in
R"s(Ys) lie on the linepa + g8 = 7= mod 27 and the lines = n. So they
are represented by the points

Usk = (an/ p, 7T)

mod 2r72. The next lemma is a standard result, frai][of [ 1]. We supply the
proof for completeness.

Lemma 12. Supposer;(Ya) admits no non-trivial homomorphisms to &).
For any neighborhood W ab, ), let us write

W*=WnN{B #£n}.
Then there exists a symmetric neighborhood W0go# ) such that
RY(C | W) = 0.

Proof. The space®*=(Y,) consists of a single point, represented by $t&3)
connectionA, with trivial holonomy. By the one-to-one correspondence from
Lemmalg, it follows that 2*(C | (0, 7)) consists of a single pointy] repre-
sented by ar8Q(3) connection which trivializege. We need only show that
a neighborhood ofA] in 2% (C) consists entirely of reducibles. Equivalently,
writing = for 71(C), we can study a neighborhood of the trivial homomorphism
o1 . m — SQ(3) and show that it consists of reducible connections.



The deformations op; are governed byH(r; R®) = HY(C) ® R3, which
is a copy ofR3. It will be sufficient to exhibit a 1-parameter deformation of
p realizing any given vector in thisl* as its tangent vector and consisting en-
tirely of reducibles. This is straightforward. Givéne so(3), we can consider
the 1-parameter family of connections in the triviD(3) bundle given by the
connection 1-forms&n, wheren is a closed 1-form with period 1 o8 and
teR. O

We need one more lemma before completing the proof of Propo$ition

Lemma 13. For any S, there is a one-to-one correspondence betwe&c |
S)and2¥(C | S), where Sis the translate S (r, 0).

Proof. Let ¢ be an automorphism of thg (2) bundleE — C whose determi-
nant is a functiorC — S which has degree 1 on the curae (The automor-
phisme does not belong to the gauge groWp because elements & have
determinant 1.) The elemeatacts on the space of flat connectioén .« (C),
and gives rise to a bijective self-map of the sp&c&(C):

€:RY(C) - RY(C).
This map restricts to a bijection: *(C | S) — 2%(C | S). ]

We can now conclude the proof of the proposition. Supposentiiat,) ad-
mits only the trivial homomorphism t8U(2), and that the only homomorphisms
p - m1(Ys) — SU(2) are those with cyclic image. L&t ¢ R? be the closed line
segment

L={(@.p)|la=0-n1<p<n}

and letL* be the open line-segment obtained by removing the endpointd.iLet
andL* _ be the translates of this line segment by the veaterg) and(—m, 0).
By Lemmasl0and1l, the hypothesis oni(Y,;) means that

RY(C | L") =0a.
By Lemmal3, we therefore have
RY(C|LL,) =0

Let P, be the line
P={pa+0qgf=qr}



and letP, = P; — (0, 27). The hypothesis omn;(Ys) means that”(C | B)
consists only of reducibles, lying over the points Bnwhere = = mod 2r.
Let S C R? be the piecewise-linear arc with vertices at the points

z1 = (—m,0)

z; = (—n, —(1—p/pm)
73 = (0, —JT)

z,=(0,7m)

zs = (7, (1- p/q)n)

Zs = (m, 0).

Figure 1l shows the se$ in the casep/q = 5/3. Because/q < 2, the set is
contained in the regionrn < B8 < x. If p/q = 2, thenShas four points on the
linesB = +m; otherwise it has just two,

Let S* be the complement i8 in of the points whos¢ coordinates are-r.
Given any symmetric neighborhodd of S, letU* similarly stand for

Ur=U\{B=2r} 2

We know that2™(C | S*) = @, becauseS is entirely contained in the union
of L, L., and the two lined;, P,. From Lemmal2 and the compactness of
R™(C), it follows that there is a symmetric neighborhdddf S such that

RV(C | U* = 0. (3

We now observe that, given any neighborhdabaf S, we can find a smooth
odd functiong with period 2r such that the graph efg on the interval |, 7]
is entirely contained itJ*. By Lemma7 and LemmaB, there exists @& such
that

R"(Y)=R"(C|B=—0@)).

The right hand side is empty because it is contained in the empt@)setliis
finishes the proof of the proposition. O

We can reformulate the result of Proposit@im the special case thit, is S®
as follows.

Corollary 14. Let K be a knot in Sand let ¥ be the manifold obtained by
Dehn surgery with coefficient £ Q. Let Y be the manifold obtained bg-
surgery, and letw — Yy be a line bundle whose first Chern class is a gener-
ator of H?(Yo; Z). Supposeri(Y,) admits no homomorphismto SU(2) with
non-cyclic image. Then, i0 < r < 2, the manifold ¥ admits a holonomy
deformation(:, ¢) so that%;f; (Yo) is empty. O
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FIGURE 1. The se§, for p/q = 5/3. The(«, 8) parameters of reducible elements of
RY¥(C) lie on the dashed lines.

4. Proof of the theorem

(i) A stretching argument

Let X be a closed, oriented 4-manifold containing a connected, separating 3-
manifoldY. Letg; be metric onX that is cylindrical on a collar region{1, 1] x

Y containingY in X. ForL > 0, let X_ = X be the manifold obtained fro{

by removing the piece{1, 1] x Y and replacing it with-L, L] x Y. There is

a metricg. on X, that contains a cylindrical region of length of Znd agrees

with the original metric on the complement of the cylindrical piece.

Letv — X be aline bundle, leE — X be a unitary rank-2 bundle with
det(E) = v, and form the configuration spaég’ (X, E) of connections irgg
modulo determinant-1 gauge transformationgpés we did in the 3-dimensional
case. In dimension 4, the bundieis not determined up to isomorphism by
alone, so we include it in our notation. Insiés (X, E) is the moduli space of
anti-self-dual connections,

M"(X, E) = {[A] € B"(X,E) | Ff =0}.
For eachL > 0, we also have a moduli space
M¥(X., E) C B"(XL, E).

(We do not take the trouble to introduce the additional notatiomand E, for
the corresponding bundles &4 .)

Let (¢, ¢) be data for a holonomy perturbation for the bunBlg. Following
[10, 11, 4], we shall usep also to perturb the anti-self-duality equationsXin.
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We use to embed |-L, L] x St x D into X, and letux be the 2-form on the
cylindrical part L, L] x Y obtained by pulling back from D and pushing
forward using this embedding. We choose a trivializationvof det E) on
the image of the embedding so that e&B3) connection inge determines
uniquely anSU(2) connection. For eaclA, the holonomy around the circles
defines, as before, a sectibt, over [-L, L] x im(c) of the bundle AWE), and
we obtain

¢'(Ha) € C=([—L, L] x im(v); ge).

ForL > 1,letg : X, — [0, 1] be a smooth cut-off function, supported in
[-L,L] x Yand equalto 1 onfL + 1, L — 1] x Y. On X_, theperturbed
anti-self-duality equatiofs the equation

Fa + B¢ (Hyu™ =0. (4)
We define the corresponding moduli space:
My(XL, E) = {[A] € B"(X,, E) | equation 4) holds}. (5)

Proposition 15. Letw = v|y. Suppose that there is a holonomy perturbation
on Y such that the perturbed representation variéfy (Y) is empty. Then for
each E with determinanton X, there exists andsuch that l\g(XL, E) is also
empty, forall L> L.

Proof. The proof is some subset of a standard discussion of holonomy pertur-
bations and compactness in Floer homology theory (5&€l[ 4]). Suppose on

the contrary that we can find\[] in Mj(Xy;, E) for an increasing, unbounded
sequence of lengths;. We start as usual with the fact that the quantity

%(Anzz‘/‘ tr(Fa A Fa)
X,
= |Fa > = IFL1I?

is independent of and depends only on the Chern numbers of the bukdle
(The norms aré.2 norms.) We write this quantity as the sum of three terms:

E(A) = E(A | XH +E(A | X2) + €A | XD,

where
Xt =Xy, \ ([-Li, Li] x Y)
X2 = ([-Li,—Li +1] x Y) U ([Li =L, Li] x Y)
X3=[-Li+1L —1]xY.
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Only the third piece has a geometry which depends ¢itom the equatiory,
we have
€A IXH =0

becauses is zero onX'. The second term in equatiof) (s pointwise uniformly
bounded, so
E(A | X3) = —Cy

whereC; is independent of. Because the sum of the three terms is constant,
we deduce that
E(A | XP) < K,

whereK is independent aof.

To understand the terri(A; | X3) better, one must reinterpret)( On X3,
the functiong is 1. Identify E on this cylinder with the pull-back of a bundle
Ev — Y, and choose a gauge representaiyefor [A;] in temporal gauge.
Write

A = Algey. (CLi+l<t<Lli—1).

ThusA; (t) becomes a path in the space of connectigii¥; Ev). The equation
(4) is equivalent or?(i3 to the condition tha# (t) solves the downward gradient
flow equation for the perturbed Chern-Simons functionak&(y; Ey):

%Ai (t) = —gradCS+ D).

In particular, CSt+ ® is monotone decreasing along the path (or constant). The
function|®| is a bounded function o (Y; Ev): we can write

|| < K.
The change in CS is equal to the quantit¥ : that is,

CS(AI(=Li + 1))—CS(A (Li — 1)) = €(A | X)
<K

So from the bound op®| we obtain
(CS+ ®)(Ai(—Li +1))—(CS+ @)(A(Li — 1)< K +2K".

Now let§ > O be given. Because G5 @ is decreasing and the total drop is
bounded byK + 2K’, we can find intervals

(&, b) C [—Li +1, L +1]
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of lengthé, so that the drop in C$ & along(a;, bj) tends to zero asgoes to
infinity. Because the equation is a gradient-flow equation, this means

bj
lim f lgrad CS+ @) (A (D)2, dt = 0.
E]

1—00

We have an expression for grdas a uniformly bounded form, so

bi
for some constani depending o. So given anyg > 0, we can find& > 0
and a sequence of intervalg, b;) of lengthé so that

/ |Fal?dvol < e
(&,bi)xY

forall i > ip. We now regard thed; as connections on the fixed cylinder
(0, 8) x Y. At this point, ife is smaller than the threshold for Uhlenbeck’s gauge
fixing theorem on the 4-ball, we can find 4-dimensional gauge transformations
on the cylinder so that, after applying these gauge transformations and passing
to a subsequence, the connections conver@iron compact subsets. (See for
example &, section 5.5].)

If A'is the limiting connection or0, §) x Y, in temporal gauge, then the
function CS+ @ is constant along the pa#(t). It follows that A(t) is constant
and is a critical point of C$ ®. This tells us thatf\(t)] belongs to the perturbed
representation variet", (Y), which we were supposing to be empty. [

The proposition above has the following corollary for the Donaldson polyno-
mial invariants. (Our notation and conventions for these invariants is taken from
[14.)

Corollary 16. Let X be an admissiblé-manifold in the sense ofLfl], so that
its Donaldson polynomial invariants JDare defined. (For example, suppose
Hi1(X; Z) is zero and B (X) is greater thanl.) Then, under the assumptions
of the previous proposition, the polynomial invariants are identically zero, re-
garded as a map

DY 1 AX) — Z.

Proof. The definition of D}, involves first choosing a Riemannian metric Xn
so that the moduli spacdd (X, E) are smooth submanifolds @B’ (X, E),
containing no reducibles and cut out transversely by the equationsisifad-
missible, then this can always be done, by changing the metric inside a ball in
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The value of the invariant is then defined as a signed count of the intersection
points betweerM” (X, E) and some specially-constructed finite-codimension
submanifolds of" (X, E). This part of the construction ddy involves only
transversality arguments, which can be carried out equally MifX, , E) in

place ofM"(X, E), for any fixedL. That the signed count is independent of the
choices made, in the unperturbed setting, is a consequence of the compactness
theorem for the moduli space. The Uhlenbeck compactification works the same
way for My (XL, E) as it does for the unperturbed anti-self-duality equations
(see B] for example); so the Donaldson invariants can be defined using the per-
turbed moduli spaces. Each moduli space is empty @niselarge enough, so

the invariants are zero. O

(i) Concluding the proof

The rest of the argument is essentially the same as the proof of the main theorem
in [13]. Let K be a knot inS? that is a counterexample to TheordmWe will
obtain a contradiction.

The manifoldYy obtained by zero-surgery admits a taut foliation and is not
St x S, by the results of12]. The following proposition is proved irlf] using
the results of T] and [6]:

Proposition 17. Let Y be a closed orientabBmanifold admitting an oriented
taut foliation. Suppose Y is not & S%. Then 'Y can be embedded as a separat-
ing hypersurface in a closed sympledfienanifold (X, 2). Moreover, we can
arrange that X satisfies the following additional conditions.

(&) The first homology HX; Z) vanishes.

(b) The euler number and signature of X are the same as those of some
smooth hypersurface iBP3, whose degree is even and not less than

(c) The restriction map K(X; Z) — H2(Y; Z) is surjective.

(d) The manifold X contains a tight surface of positive self-intersection num-
ber, and a sphere of self-intersectien. O

We apply this proposition to the manifold,, to obtain anX with all of
the above properties. Using the results 8 it was shown in 13] that a 4-
manifold satisfying these conditions satisfies Witten’s conjecture relating the
Seiberg-Witten and Donaldson invariants. (SE& {Conjecture 5 and Corollary
7] for an appropriate statement of Witten’s conjecture in this context.) Because
X is symplectic, its Seiberg-Witten invariants are non-trivial ][ For the
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same reasonX has Seiberg-Witten simple type. From Witten’s conjecture, it
follows that the Donaldson invarianBy are non-trivial, for alv on X.
By the penultimate condition oK in Propositionl7, we can choose — X
so thatcy (v) restricts to a generator di2(Yy; Z). Write w = vly,. If K is a
counterexample to Theorefiy then Corollaryl4 tells us there is a holonomy
perturbationp such that
R/ (Yo) = 0.

Corollary16then tells us thaDy is zero. This is the contradiction. O

(iii) Further remarks

An analysis of the proof of Theoretreveals that it proves a slightly stronger
result (stronger, that is, if one is granted the resultsl@f)[ For example, we
can state:

Theorem 18. Let N be an embedded solid torus in an irreducible clo8ed
manifold Y with H(Y) = Z. Let C= Y \ N° be the complementary manifold
with torus boundary.

Then there is at most one Dehn filling of C which yields a homotopy sphere.
Indeed, for all but one slope, the fundamental group of the manifold obtained by
Dehn filling admits a non-trivial homomorphism to &). O

The point here is that the original hypothesis need not bekhiata non-trivial
knot in S°. What one wants is that zero-surgery Kinshould be an irreducible
homologyS! x S%; and if we make this our hypothesis, then we can also consider
the case thaK is a knot in (for example) a homotopy sphere.

One can also ask whether there is a non-trivial extension of Thetrtam
other integer surgeries. The results b5][show that surgery with coefficient 3
or 4 on a non-trivial knot cannot be a lens space. It would be interesting to know
whether the fundamental groups ¥ and Y, must admit homomorphisms to
SU(2) with non-abelian image wheK is non-trivial. Surgery with coefficient
+5 on the right-handed trefoil produces a lens space, so one does not expect to
extend Theoren further in the direction of integer surgeries without additional
hypotheses. Dunfields] has provided an example of a non-trivial knot $
for which the Dehn fillingYs7,» has a fundamental group which is not cyclic but
admits no homomorphism t8U(2) (or evenSQ(3)) with non-abelian image.
(The knot is the(—2, 3, 7) pretzel knot, for whichY;g and Y, are both lens
spaces9].) This example shows that the property of having cyclic fundamental
group and the property of admiting no cyclic homomorphic imageli2) are
in general different for 3-manifolds obtained by Dehn surgery.
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